Skip to the content.

AutoPrep

Jianwei Yu1, Hangting Chen1, Yanyao Bian 1, Xiang Li1, Yi Luo1, Jinchuan Tian1, Mengyang Liu1, Jiayi Jiang1, Shuai Wang2
1 Tencent AI Lab
2 Shenzhen Research Institude of Big data

Abstract

Recently, the utilization of extensive open-sourced text data has significantly advanced the performance of text-based large language models (LLMs). However, the use of in-the-wild large-scale speech data in the speech technology community remains constrained. One reason for this limitation is that a considerable amount of the publicly available speech data is compromised by background noise, speech overlapping, lack of speech segmentation information, missing speaker labels, and incomplete transcriptions, which can largely hinder their usefulness. On the other hand, human annotation of speech data is both time-consuming and costly. To address this issue, we introduce an automatic in-the-wild speech data preprocessing framework (AutoPrep) in this paper, which is designed to enhance speech quality, generate speaker labels, and produce transcriptions automatically. The proposed AutoPrep framework comprises six components: speech enhancement, speech segmentation, speaker clustering, target speech extraction, quality filtering and automatic speech recognition. Experiments conducted on the open-sourced WenetSpeech and our self-collected AutoPrepWild corpora demonstrate that the proposed AutoPrep framework can generate preprocessed data with similar DNSMOS and PDNSMOS scores compared to several open-sourced TTS datasets. The corresponding TTS system can achieve up to 0.68 in-domain speaker similarity.


Fig.1: The diagram of the proposed full-band AutoPrep framework.

Dataset

Open access processing results of AutoPrep

Dataset Downloadable processing results Content format
WenetSpeech Automatic speaker assignment <audio_segment_ID> <long_audio_ID>_<speakerID>
GigaSpeech Automatic speaker assignment <audio_segment_ID> <long_audio_ID>_<speakerID> <cos_sim>

Processing results on AutoPrepWild

Examples of processing results

Original long audio

Source media Link

Part of the speech segments and speaker labels

Speaker ID (cluster) Speech segment Speech segment (enhanced)
1
1
1
2
2
2
3
3
3
4

Processing results on WenetSpeech

Original long audio

Source long audio ID Y0000005116_CcX1LRPz1ZA

Part of the speech segments and speaker labels

Speaker ID (cluster) Speech segment Speech segment (enhanced)
1
1
1
2
2
2
3
3
3
4
4
4

Synthetic audios of WenetSpeech speakers

Speaker prompt (GT) Synthetic speech (Trained on data without enhancement) Synthetic speech (Trained on data with enhancement) Content of the synthetic Speech
九月的这个刺客,团战基本上能盯着你的后排切,他在队伍里也是总击杀最多的人
红方这只队伍的关键点在打野身上,给他拿到一手镜也能更好的带动队伍节奏
九月的这个刺客,团战基本上能盯着你的后排切,他在队伍里也是总击杀最多的人
这力量在随后几年多次保护她,但也引来了觊觎之人。
这个镜还是怕对方九月选手拿到的,东方镜胜率有67%,确实不能放
九月拿到了自己的常用英雄,身为队伍的核心,相信镜也将会成为场上的焦点
西施的童年并非无忧无虑,自小便学会了各种谋生的小把戏。
一边学习魔道课程,一边参与各种大奖赛事,
九月的这个刺客,团战基本上能盯着你的后排切,他在队伍里也是总击杀最多的人
西施的童年并非无忧无虑,自小便学会了各种谋生的小把戏。
不明真相的西施被庄周所救,隐姓埋名来到稷下。
九月拿到了自己的常用英雄,身为队伍的核心,相信镜也将会成为场上的焦点
这个镜还是怕对方九月选手拿到的,东方镜胜率有67%,确实不能放
不明真相的西施被庄周所救,隐姓埋名来到稷下。

Synthetic audios of AutoPrepWild speakers

Speaker Synthetic speech Content of the synthetic Speech
1 财联社9月22日电,洲际油气触及跌停,新潮能源、海默科技、蓝焰控股、石化油服、潜能恒信等跌幅居前。
1 我是波克机器人,作为一名男议员,小心翼翼的政治家,害怕变革,倾向于选择保守的策略,共有3种情绪,>包括高兴,兴奋和不耐烦。
2 我是谢顶男议员,尸位素餐的中年高位者,贵族出身,惯性嘲讽年轻人。
2 纱的力量来自遥远神秘的南洲,和她的家族息息相关。